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Abstract — A typical synchronous condenser (SC) consists of a 
free-spinning, wound-field synchronous generator and a field 
excitation controller. In this paper, we propose an SC that 
employs a permanent magnet synchronous generator (PMSG) 
instead of a wound-field machine. PMSGs have the advantages of 
higher efficiency and reliability. In the proposed configuration, 
the reactive power control is achieved by a voltage converter 
controller connected in series to the PMSG. The controller varies 
the phase voltage of the PMSG and creates the same effect on the 
reactive power flow as that of an over- or underexcited wound-
field machine. The controller’s output voltage magnitude controls 
the amount of the reactive power produced by the SC. The phase 
of the controller’s output is kept within a small variation from 
the grid voltage phase. This small phase variation is introduced 
so that a small amount of power can be drawn from the grid into 
the controller to maintain its DC bus voltage. Because the output 
voltage of the controller is only a fraction of the line voltage, its 
VA rating is only a fraction of the rating of the PMSG. The 
proposed scheme is shown to be effective by computer 
simulations.  

 
Index Terms—Synchronous condenser, permanent magnet 

synchronous generator, reactive power control. 
 

I.  INTRODUCTION 
 
Synchronous condensers (SCs) have been used traditionally in 
the power industry to support grids that have poor power 
factor and voltage regulation. Over the years, the role of SCs 
has been partially fulfilled by static equipment such as static 
synchronous compensators (STATCOMs) and static VAR 
compensators (SVCs) [1]. SVCs and STATCOMs have the 
advantage of faster responses [2]. In certain grid fault 
conditions [3], SCs provide higher reactive power, and, more 
importantly, the kinetic energy stored in the rotor provides 
inertial support to the grid during faults [4]. The inertial 
support capability and fast response time become more 
important as the grid-connection requirements (such as low-
voltage ride-through) become more stringent. The proposed 
SC utilizes a permanent magnet synchronous generator 
(PMSG) instead of a wound-field machine. The reactive 
power control is achieved by a serially connected voltage 
converter controller rated at a fraction of the VA rating of the 
SC. This controller also damps the PMSG’s tendency to 
oscillate when connected to an AC source [5]. The proposed 
system has a faster response than that of a traditional field-

controlled SC. A crowbar circuit can be used to protect the 
circuit during a grid fault while the PMSG provides a surge of 
real power to the grid.  
 

II.  SYSTEM CONFIGURATION AND THEORY OF OPERATION 
 
The proposed system consists of a voltage converter controller 
connected in series to a PMSG through transformers. This 
connection can be made in two ways, as shown in Fig. 1. 
Connection on the ground side has the advantage of lower 
operating voltage with respect to the ground and the 
possibility of being directly connected to the converter circuit 
without using transformers.  

 
 

 
Fig. 1. Two possible configurations of the proposed system.  
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Fig. 2 shows the equivalent diagram of the proposed system, 
where VG represents the grid voltage, VC represents the 
controller’s output voltage connected on the grid side of the 
PMSG, E represents the voltage from the internal emf of the 
PMSG, and X is the PMSG’s impedance. The phase of the 
controller’s output voltage, VC, is locked to the grid voltage, 
VG. 

 
Fig. 2.  Equivalent diagram of the proposed system. 

 
As shown in Fig. 2, when the controller output voltage, Vc, is 
in phase with the grid voltage (VG), the PMSG phase voltage 
increases. This has the effect of absorbing reactive power from 
the grid to the PMSG. When the output voltage is 180 degrees 
out of phase with the grid voltage, the PMSG phase voltage 
decreases, and this has the effect of delivering reactive power 
from PMSG to the grid. The amount of the VAR generated or 
absorbed is controlled by the signed magnitude of Vc. In either 
case, the controller does not consume any real power from the 
grid. The phase of Vc can be varied slightly so that the 
controller draws a small amount of power from the grid to 
maintain its internal DC bus at a certain level.  
 
The current shown in Fig. 2 and the complex power drawn 
from the bus are given in (1) and (2). 

G CV V EI
jX

+ −
=  (1) 

*
* G C

G G
V V ES V I V

jX
 + −

= ⋅ =  
 

 (2) 

Because VC is controlled to be in phase with VG (with a signed 
magnitude) and the PMSG has no mechanical loading, all 
three voltages— , ,  G CV V E —are in phase. Also, by design 
the amplitude of E matches the nominal value of VG—i.e., 

.GV E=  Under this condition, (2) can be simplified to (3). 
Note that the complex power S is pure reactive.  

*
G CV VS
jX

=  (3) 

III.  REACTIVE POWER AND DC BUS VOLTAGE CONTROL  
 
From (3), the VAR control can be achieved with the open-loop 
control law in (4), where Varcmd is the commanded reactive 
power, which can be either positive or negative (i.e., 
consuming VAR or producing VAR). Equation (4) is the feed-
forward part of the controller.  

C cmd
G

XV Var
V

 
=  

 
 (4) 

Equation (5) is a closed-loop control law for VAR control that 
includes a PI controller.  

( )1
1

i
C cmd p cmd

G

X kV Var k Var Var
V s

   = + + −   
  

 (5) 

The variable VC in (4) and (5) is the signed magnitude of the 
controller output voltage.  The sign of VC determines whether 
VC is in phase or 180 degrees out of phase with the grid 
voltage, VG. 
 
Because the controller provides only reactive power, it 
consumes only a small amount of power for its operation.   
This power can be obtained directly from the grid via a step-
down transformer and a rectifier. Another way to obtain this 
power is to simply vary the phase of the output voltage 
slightly and create a positive power flow into the DC bus of 
the controller. The amount of power absorbed by the 
controller due to the small phase shift, δ, is given in (6).  

( )
2 2 2

cos sin
2

C C CV V VP
X X X

π δ δ δ = ⋅ + = − ⋅ ≈ − 
 

 (6) 

Because only a small amount of power is required to cover the 
controller losses, a slight phase deviation is adequate to create 
the necessary real power flow into the controller to maintain 
the DC bus voltage of the controller. This small phase 
deviation does not significantly affect the requirement on the 
phase of VC made earlier. Equation (7) shows the control law 
for the DC bus voltage, where V*DC is the reference DC bus 
voltage and a PI controller is used to regulate the DC bus 
voltage. 

( )*2
2

i
p DC DC

kk V V
s

δ  = − + − 
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 (7) 
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Fig. 3.  Reactive and DC bus voltage controller. 

 
Fig. 3 shows the controllers for the VAR control and DC bus 
voltage stabilization control. From (5), the feed-forward term 
kff in Fig. 3 should be as given in (8).  

 (8) 

Note that, as shown in Fig. 3, the sign of the phase angle 
output, δ, is reversed when the sign of VC is negative. This is 
necessary because the reference phase used in generating the 
controller output voltage is always in phase with the grid 
voltage. When the polarity of VC is reversed (i.e., when the 
condenser consumes reactive power), the phase angle, δ, 
should also be reversed to maintain the same power flow 
direction. 

 
Fig. 4.  Complete controller block diagram. 

 
A PMSG tends to oscillate when connected to an AC 

source. At the expense of some power losses, a shorted 
damping winding can be incorporated into the rotor design to 
damp out the oscillation. The damping effect can also be 
achieved with a serially connected damping controller [5]. 
This damping controller has the same hardware configuration 
as the proposed SC. In fact, the control software for the 
proposed SC and that of the damping controller can be 
implemented in the same embedded controller. No additional 
hardware component is required. Fig. 4 shows the block 
diagram of the complete controller structure of the proposed SC.  

IV.  SIMULATION RESULTS 
 
Fig. 5 shows the top-level simulation blolck diagram of the 
proposed controller. The following parameters are used to 
generate all the simulation results presented in this section: VG 

= 10 kv, VC = 1 kv, and X = 1.5 Ω.  
 

 
 

Fig. 5.  Top-level simulation block diagram of the proposed PMSG-based 
synchronous condenser system.  

 
Fig. 6, Fig. 7, and Fig. 8 show the results from a typical 
simulation run. The first (top) trace in Fig. 6 is the VAR from 
the synchoronous condenser (negative means supplying VAR 
to the grid). The second trace is the power absorved by the 
synchornous condenser. In Fig. 7, the first trace shows the 
positive peak envelope of the Phase A grid volage. The second 
trace is the Phase A volage of the controller output. The last 
trace is the DC bus voltage. The first trace in Fig. 8 is the 
PMSG torque, and the bottom trace is the PMSG’s electrical 
speed (i.e., the physical speed times the pole-pair of the 
machine). At 60 Hz, the electrical speed of the PMSG is 
2π(60) = 377 (rad/s).  
 
The following events are simulated during this 10-s period.  
 
0–1 s: All controller functions are disabled. The PMSG is 
driven by the grid voltage directly with an initial condition.  
As shown by the power, torque, and speed traces, the machine 
oscillates during this period of time. At t = 1 s, the damping 
function is enabled and the oscialltion is effectively damped 
out.  
 
2–3 s: The VAR command is ramped to -10 MVAR 
(providing VAR). As shown in Fig. 6, the actual VAR follows 
the command closely. The VAR command levels off at -10 
MVAR after t = 3 s.  
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Between t = 6 s and t = 8 s, the grid votlage is lowered by 5%. 
This is to test the effectiveness of the VAR control loop. As 
shown, the output VAR is maintained at the commanded 
value. During this period of time, the controller output is 
reduced by the control loop so that the PMSG’s phase voltage 
remains the same and is unaffected by the 5% drop of the grid 
voltage.  
 
The last trace in Fig. 7 shows that the DC bus voltage is 
maintained near the nominal value of 1.5 kv throughtout the 
simulation period.  
 

 
Fig. 6.  (Top) VAR and (bottom) power to the PMSG.  

 
 

Fig. 8 shows that the torque of the PMSG is maintained 
near zero and the speed of the PMSG is kept at the nominal 
speed throughout the simulation after the first second, when 
the PMSG oscillates because of the lack of damping. There are 
several small transient fluctuations because of the change in 
operating condition in the simulation.  
 

 
Fig. 7. (Top trace) Positive peak of the grid voltage, (middle trace) 

controller output, and (bottom trace) DC bus voltage. 

 
Fig. 8. (Top trace) PMSG’s torque and (bottom trace) PMSG’s electrical 

speed—i.e., the physical speed times the pole-pair of the machine.  

V.  CONCLUSION 
 
SCs have the advantage over STATCOMs or SVCs because 
they are able to provide real power in a grid fault condition 
(provided by the rotating mass—inertial response). In this 
paper, we propose using PMSGs instead of wound-field 
machines for SCs. PMSGs are more efficient and reliable. The 
control of the reactive power is achieved by a serially 
connected voltage source controller that can react to the grid 
condition faster than that of a wound-field machine, and its 
VA rating is only a fraction of the rating of the SC. The 
proposed scheme is shown to be effective based on the 
preliminary study we have performed.  
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